Sexual conflict in wing size and shape in Drosophila melanogaster

By Jessica K. Abbott^{1,2}*, Stéphanie Bedhomme^{1,3}, and Adam K. Chippindale¹

1. Department of Biology Queen's University Kingston, Ont. K7L 3N6 Canada 2. Current address: Department of Animal Ecology Evolutionary Biology Centre (EBC) Uppsala University Norbyvägen 18D SE-752 36 Uppsala, Sweden Email: jessica.abbott@ebc.uu.se Phone: +46 18 471 2938 Fax: +46 18 471 6484 3. Current address: Evolutionary Systems Virology Group Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV) Campus UPV, CPI 8E, lab. 3.0.4 Ingeniero Fausto Elio s/n, 46022 València, Spain *author for correspondence

Running title: Sexual conflict in wing size and shape

ABSTRACT

1

2 Intralocus sexual conflict occurs when opposing selection pressures operate on loci expressed 3 in both sexes, constraining the evolution of sexual dimorphism and displacing one or both 4 sexes from their optimum. We eliminated intralocus conflict in Drosophila melanogaster by 5 limiting transmission of all major chromosomes to males, thereby allowing them to win the 6 intersexual tug-of-war. Here we show that this male-limited (ML) evolution treatment led to 7 the evolution (in both sexes) of masculinized wing morphology, body size, growth rate, wing 8 loading, and allometry. In addition to more male-like size and shape, ML evolution resulted in 9 an increase in developmental stability for males. However females expressing ML 10 chromosomes were less developmentally stable, suggesting that being ontogenetically more 11 male-like was disruptive to development. We suggest that sexual selection over size and 12 shape of the imago may therefore explain the persistence of substantial genetic variation in 13 these characters and the ontogenetic processes underlying them. 14 15 Keywords: intralocus sexual conflict, ontogenetic sexual conflict, Drosophila melanogaster,

geometric morphometrics, sexual size dimorphism, experimental evolution

17

18 INTRODUCTION

19

20 The existence of sexual dimorphism is, in and of itself, evidence that the two sexes have had a 21 history of disruptive selection. Recently it has been suggested that constraints on the evolution 22 of sexual dimorphism as a result of genetic correlations between the sexes may impose a 23 substantial load on the fitness of one or both sexes (Prasad et al. 2007; Rice 1984). This 24 'gender load' may sometimes be detectable as a negative intersexual genetic correlation for 25 fitness, and evidence for such a pattern of covariation across the sexes has accumulated in the 26 last decade in a variety of sexual organisms in both the laboratory and the field (reviewed in 27 Bonduriansky & Chenoweth 2009; and Cox & Calsbeek 2009). Nonetheless, intralocus sexual 28 conflict is, and will probably always be, difficult to measure because of: (1) the composite 29 nature of fitness and the virtual certainty of an admixture of trait-specific intersexual genetic 30 correlations affecting it; (2) the fact that maintenance of sexually antagonistic genetic 31 variation requires specific, locus-dependent (i.e. autosomal or sex-linked) relationships 32 between the selection coefficients on males and females; and (3) a variety of environmental 33 and genetic factors which will tend to make intersexual correlations positive (Bonduriansky & 34 Chenoweth 2009; Cox & Calsbeek 2009).

35

One way to observe intralocus sexual conflict as an evolutionary force is to manipulate the relative intensity of selection on the two sexes. We followed the approach of Rice (1996) to eliminate female gene expression in *D. melanogaster* by limiting virtually the entire genome (all but the dot chromosome IV; <1% of the genome) to males. Under this male-limited (ML) experimental evolution scheme, the X-chromosome and both the major autosomes behave like a single large Y-chromosome in that they are transferred from father to son and are never expressed in females. This lets us harness the genome-wide power of many loci to augment 43 the benefits of sex-limitation, and allows loci polymorphic for male-benefit / female-44 detriment alleles to be positively selected. After a number of generations of ML evolution, 45 the ML-selected chromosomes can then be expressed in both males and females in order to 46 test their effects in a standardized genetic background. ML evolution should generate populations approaching the best masculine phenotypes available from that fraction of the 47 48 standing variation in the ancestral populations. In accordance with the predictions from 49 intralocus sexual conflict, it has previously been found that release from selection upon 50 female function led to a burst of male-specific adaptation: the fitness of males increased and 51 the fitness of females inheriting ML genotypes decreased (Prasad et al. 2007). These evolved 52 fitness differences were accompanied by phenotypic shifts towards the male optimum 53 (inferred from the direction of extant sexual dimorphism) in developmental time and body 54 size (Prasad et al. 2007). Gains in male fitness were mediated by increased attractiveness and 55 mating success (Bedhomme et al. 2008) and not by postcopulatory sexual selection (S. 56 Bedhomme, unpublished data), therefore directing our attention to aspects of behaviour and 57 the physical phenotype related to courtship and mating.

58

59 Because ML evolution resulted in a shift towards the male optimum for previously studied 60 traits, this method should be useful for studying other traits exhibiting substantial sexual 61 dimorphism in *Drosophila*, such as body size. Unlike vertebrates, sexual size dimorphism 62 (SSD) in which females are larger than males is the rule rather than the exception in the Arthropoda, and is proximately explained by differences in growth rate rather than 63 64 development time (Blanckenhorn et al. 2007). The main hypotheses offered to explain this pattern are fecundity selection in females, female anautogeny (where females must feed 65 66 before oviposition, Blanckenhorn et al. 2007), selection for protandry (Maklakov et al. 2004), 67 and a higher cost of production of male gonadal tissue (Miller & Pitnick 2003). A fifth

68 hypothesis has occasionally been advanced, connecting small male size to direct benefits 69 accruing from sexual selection, such as mate-finding (Brandt & Andrade 2007). Drosophila 70 *melanogaster* displays the typical arthropod pattern for SSD, but more strikingly, males are 71 not only smaller than females, but also take longer to mature, making them substantially slower-growing (Blanckenhorn et al. 2007). There is evidence that fitness is positively 72 73 associated with locomotor activity in males, and that this is a sexually antagonistic trait, with 74 more active females experiencing reduced fitness (Long & Rice 2007). One potential 75 explanation for this result is that smaller males excel in chasing, harassment, or courtship 76 displays involving speed or agility, but their daughters inherit only the negative effects of 77 small size on fertility. A second related hypothesis is that while females benefit from rapid 78 growth in terms of fertility selection, males benefit from slower growth because it promotes 79 higher ontogenetic fidelity and resulting morphological quality. This latter 'selection for 80 perfection' model (Chippindale et al. 2003), suggests that the risks of rapid growth are not 81 just those associated with increased feeding rate and exposure to predators, but also risks 82 associated with developmental accidents. In this model, the risks associated with rapid 83 growth are outweighed by the benefits for females, but not for males, since male fitness may 84 be substantially negatively impacted by developmental accidents that render them further 85 from the optimal size or shape, and/or more asymmetrical.

86

Developmental stability is the ability of an organism to buffer its phenotype against genetic or environmental disturbances encountered during development and is usually measured as the inverse of the mean fluctuating asymmetry (FA, Clarke 1998). The selection for perfection model predicts that this sort of developmental buffering should be more important for males than for females. More specifically, in the context of the male-limited (ML) evolution experiment, we expect that ML males will (1) be more symmetrical than Control males and

93 that (2) evolve to be closer to the male phenotypic optimum inferred from extant sexual 94 dimorphism in size and shape (i.e. have smaller wings which are more masculine in shape). 95 To investigate these hypotheses, we carried out a geometric morphometric analysis of wing 96 morphology. Wing morphology was chosen as an appropriate trait to measure when looking 97 for evidence of intralocus sexual conflict since it is known to be subject to sexual selection in 98 males (Taylor & Kekic 1988) and lends itself well to landmark-based methods (Klingenberg 99 & McIntyre 1998) and fluctuating asymmetry analysis (Breuker et al. 2006; Palmer 1994; 100 Palmer & Strobeck 2002).

101

102 METHODS

103

We expressed ML and Control (C) haploid genomes ('hemiclones' consisting of the major
autosomes and the X chromosome) from 4 replicate lines in both sexes after 82 generations of
experimental ML evolution (Prasad *et al.* 2007). We assayed fitness and investigated
intralocus sexual conflict and developmental stability in wing morphology. For more details
about ML evolution and the production of flies for fitness and morphological measurements,
please see Supplementary Information.

110

Female fitness was measured as follows: females were isolated as virgins and housed in groups of 10 along with five competitor females from a replica of the base stock (LH_M) homozygous for the relatively benign recessive scarlet eye marker (called LH_{st}) and were provided with 10 mg of yeast/vial. On day 12 post egg-lay, females were combined with 20 males from LH_{st} for 18 h, after which they were separated from the males and the ML females were allowed to oviposit for 20 h (LH_{st} females were discarded). The progeny eclosing from these vials were counted 12 days later. Female fitness was therefore measured as total number of adult offspring produced after competition for a limited resource (yeast). Fifteen
such vials were set up per population, and final sample size was 119 vials.

120

121 To measure male fitness, males were harvested 11 days post-oviposition. Ten males from ML 122 (or C) populations were combined with 10 males from LHst population. Fifteen such vials 123 were set up per population. On day 12 post egg lay, males were combined with 15 virgin 124 clone-generator females and allowed to interact for 18 h after which the females were 125 separated from the males and allowed to oviposit for 18 h. The progeny from the two types of 126 males can be distinguished because of their eye color. Twelve days later, the fraction of 127 progeny sired by the focal males (ML or C) within each vial was scored, and this proportion 128 was used as a fitness measure. Fifteen such vials were set up per population, and final sample 129 size was 115 vials.

130

Male and female fitness were measured in different currency. In order to be able to include the two fitness measures in a same analysis, we calculated mean values for each sex within each replicate population (ML and C values pooled), and then divided the values for each sample by the appropriate mean in order to get sex-specific relative fitness values. Mean relative fitness values for each combination of sex, replicate population, and selection regime were calculated (N=16) and then were analyzed using a factorial ANOVA in JMP, with sex (M or F), selection regime (C or ML), and their interaction (sex*sel) as fixed factors.

138

Individuals slated for morphological analysis were frozen and stored individually in
eppendorf tubes at -20°C until they could be processed. Wings were mounted by hand on
glass microscope slides using double-sided tape. Sample size was 965 individual flies
(between 48 and 73 per population/sex/selection regime). After wing removal, flies were

143 dried for at least 24 hours in a 65°C drying oven before being individually weighed to the 144 nearest 0.0001 g on a Cahn C-31 microbalance. Eleven landmarks were selected for 145 geometric morphometric analysis (Figure 1A). These landmarks are similar to those used in 146 other studies of wing morphology (Breuker et al. 2006; Gidaszewski et al. 2009). However 147 some landmarks on the proximal part of the wing that have been used in previous studies were 148 not included here as it was sometimes difficult to remove the wing without damaging this 149 area. Wings were photographed and digitized twice (non-successively) to account for error 150 due to distortion by camera/microscope lenses and variation in the placement of landmarks 151 (Klingenberg & McIntyre 1998). Unfortunately it was not possible to entirely control for 152 error caused by the mounting process, but individuals with wings that were damaged or 153 creased in any way were excluded from the analysis. Also, because wings were mounted and 154 digitized in a random order, improvements in mounting/digitizing technique over time cannot 155 be the cause of any systematic differences between groups. Geometric morphometric analysis 156 (digitization of landmarks, procrustes superimposition, relative warp analysis, and 157 visualization of shape differences) was carried out in the tps suite of programs by F. James 158 Rohlf (tpsUtil, tpsDig, tpsRelw, tpsRegr and tpsSplin) which are freely available at 159 http://life.bio.sunysb.edu/morph/.

160

161 Centroid size was used as a measure of wing size, and wing shape was analysed using relative 162 warp scores (details below). Note that centroid size, despite being a linear measure, is very 163 highly correlated with wing area (r = 0.99, P < 0.0001) for this dataset. Wing loading was 164 calculated as dry mass/wing centroid size, and allometric slopes were obtained by regressing 165 wing size on body mass for each combination of sex, replicate population, and selection 166 regime. Because previous results found differences in body mass between ML and Control 167 flies (Prasad *et al.* 2007) we were interested in investigating allometric slopes to see if differences in wing size could simply be attributed to the evolution of differences in bodysize.

170

171 Developmental stability in wing size was examined using fluctuating asymmetry (FA) 172 analysis (Palmer 1994; Palmer & Strobeck 2002). Because male and female Drosophila 173 *melanogaster* differ substantially in size, size-standardized wing size asymmetry values were 174 calculated via ln(R)-ln(L) (Palmer & Strobeck 2002). We carried out analysis on both 175 standardized data (i.e. using ln(R)-ln(L) values) and raw data (i.e. using raw size and shape 176 values), but since results were qualitatively similar for both datasets, only the standardized 177 analysis is presented in detail here. Before any tests of wing size FA were performed, an 178 ANOVA was carried out to quantify and test the different components of asymmetry: error, 179 FA, and directional asymmetry (DA; see Palmer & Strobeck 2002 for details). FA was large 180 relative to error variance and therefore significant ($F_{964, 1394} = 8034$, P < 0.0001), and although 181 there was significant DA ($F_{1,1394} = 63.77$, P < 0.0001), this was probably mostly due to the 182 large size of the dataset (Palmer & Strobeck 2002). The side*wing size effect was very small 183 (Cohen's d = 0.0194), indicating that DA was much smaller than the average deviation around 184 the mean. It was therefore not deemed necessary to correct for DA (Palmer & Strobeck 185 2002). Signed asymmetry values were normally distributed. Mean absolute asymmetry 186 values for each combination of sex, replicate population, and selection regime were calculated 187 (N=16) and then were analyzed using a factorial ANOVA in JMP, with sex (M or F), 188 selection regime (C or ML), and their interaction (sex*sel) as fixed factors (this is equivalent 189 to Levene's test; Palmer & Strobeck 2002). 190

191 Similarly, mean values for each combination of sex, replicate population, and selection

regime were calculated (N=16) for all other univariate traits (wing size, wing loading, body

193 mass, allometry, and fitness) and then were analyzed using a factorial ANOVA in JMP, with 194 sex (M or F), selection regime (C or ML), and their interaction (sex*sel) as fixed factors. 195 This design is the same as that used for a previous analysis of data from these populations 196 (Prasad et al. 2007). The mean values used in the analysis of univariate traits are reported in 197 Supplementary table S1. For the analysis of wing shape, we carried out a MANCOVA 198 analysis of a similar design, but with centroid size included as a covariate to control for 199 allometry. Because the MANCOVA was performed on mean values there were too few 200 degrees of freedom to calculate standard multivariate statistics for this analysis when carried 201 out on the matrix of all partial warps plus the uniform component. We therefore analysed 202 shape using relative warps (i.e. principal components of shape), and included as many in the 203 model as possible, under the constraints provided by the limited number of degrees of 204 freedom. We were able to include the first 11 relative warps (of 18) as dependent variables in 205 the model, which explained over 95% of the variation in shape in our dataset.

206

207 RESULTS

208

209 We found evidence of phenotypic masculinization as a result of ML-evolution for all 210 univariate traits. Males had smaller wings than females (Table 1A, Figure 2A), lower body 211 mass (Table S2A, Figure S1A), and lower wing loading (Table S2B, Figure S1B), and parallel 212 changes were seen as a result of ML evolution such that ML individuals of both sexes had 213 smaller wings (Table 1A, Figure 2A), lower body mass (Table S2A, Figure S1A), and lower 214 wing loading (Table S2B, Figure S1B) than Controls. The difference between the sexes in the 215 allometric relationship between wing size and body mass was not significant, but the change 216 in this relationship as a result of ML-evolution was still in the direction of extant sexual 217 dimorphism (Table 1B, Figure 2B), mostly due to an increase in slope in ML females. There

were no significant sex*sel interactions for any of these traits, indicating that the degree of
sexual dimorphism was unchanged as a result of ML evolution.

220

221 Both the sexes and the selection treatments differed in wing shape (Table 2), and qualitatively 222 similar patterns of phenotypic masculinization appeared to have been achieved via different 223 evolutionary pathways. In males, the size of the proximal part of the wing was reduced and 224 the distal part was increased relative to females (Figure 1B). A similar pattern of reduction of 225 the proximal part of the wing and increase of the distal part was seen in ML individuals 226 relative to Controls (Figure 1C), but this general result was achieved via a different pattern of 227 displacement of wing vein intersections compared to the difference due to sexual dimorphism. 228 Again, there was no indication of any change in the degree of sexual dimorphism in shape for 229 ML individuals. This means that although the visualization in Figure 1C was calculated using 230 pooled data from both sexes, the pattern is the same even if the sexes are plotted separately 231 (consistent with the non-significant sex*selection interaction term in Table 2).

232

233 We also found increased fitness in ML males, and decreased fitness of females carrying ML-234 evolved chromosomes, consistent with earlier results from this system (Prasad et al. 2007; 235 Table 1C, Figure 2C). Interestingly, there was a significant sex*selection interaction effect in 236 FA (Table 1D): the rank order of ML and C groups switched between the sexes (Figure 2D) 237 such that ML males had lower FA than C males, while the opposite was true for females. 238 This pattern paralleled the changes seen in fitness (Figure 2C) rather than size (Figure 2A). 239 ML-expressing males were more symmetrical for wing size than Control males were, 240 however females showed decreased developmental stability (higher size FA) when they 241 carried ML chromosomes, despite being smaller than control females (Figure 2A, Table 1). 242

244

245 We reproduce the earlier result that male-limited (ML) selection leads to increased total 246 fitness of males, and decreased fitness of females experimentally expressing ML 247 chromosomes. We also found support for our two specific predictions about the evolution of 248 size and wing morphology. First, ML males were indeed more symmetrical than C males, 249 reflecting higher developmental stability. Second, we found that ML evolution proceeded in 250 the direction of extant sexual dimorphism for all univariate traits, and that wing shape 251 evolution evolved in a manner qualitatively similar to the direction of sexual dimorphism. 252 However the change in wing shape as a result of ML evolution was achieved through a 253 different pattern of displacement of wing vein intersections relative to the difference in shape between males and females. These results suggest that the average male in the ancestor or 254 255 control populations is displaced from the optimal phenotype, presumably by counter-selection 256 in females since evolution in wing morphology occurred once selection on females was 257 removed. Hence, although the effects of selection regime were still generally smaller than sex 258 differences, we saw morphological evidence for a gender load resulting from intralocus sexual 259 conflict.

260

Results on allometric relationship between wing size and body mass suggest both that a number of inter-related aspects of the developmental program have changed as a result of ML evolution, and that a reduction in body size is not the proximal explanation for the evolution of smaller wings in ML individuals. Our results also provide further experimental evidence that intersexual genetic correlations for wing size/shape and body mass traits must be high, since there was no change in the degree of sexual size dimorphism as a result of ML evolution for these traits (no significant sex*sel interactions, Table 1A-B, Table 2, and Table S2A-B).

This is consistent with previous research on *Drosophila melanogaster* which has shown that
intersexual genetic correlations for wing and body size traits generally range from 0.6 to 1
(Cowley & Atchley 1988; Cowley *et al.* 1986; Karan *et al.* 2000; Karan *et al.* 1999; Reeve &
Fairbairn 1996), with a mean around 0.8 (Poissant *et al.* 2009, supplementary information).

273 Previous analysis of wing shape in a number of *Drosophila* species suggests that wing 274 morphology is relatively evolutionarily labile (Gidaszewski et al. 2009), and this is consistent 275 with our results since differences in wing size, wing shape, wing loading, and allometry 276 evolved on a short time scale. However the lack of change of the degree of wing shape 277 dimorphism as a result of ML evolution suggests that intersexual genetic correlations for 278 shape are high. Shape changes should therefore evolve much more readily as a result of 279 sexually congruent selection than as a result of sexually antagonistic selection. Wing loading 280 is a trait which exhibits both plastic and genetic variation (Frazier et al. 2008; Gilchrist & 281 Huey 2004; Powell et al. 2010), so the observed change in wing loading on a short time scale 282 seen here is consistent with previous results but is (to our knowledge) novel in detecting 283 changes in wing loading due to sexual selection rather than ecological adaptation. The wing 284 shape results also suggest that a functionally similar result (i.e. a decrease in the area of the 285 proximal part of the wing and increase in the area of the distal part of the wing) has been 286 achieved via different ontogenetic pathways. This is consistent with previous results for wing 287 size evolution in Drosophila, where analogous clines in wing size are found in European and 288 North American populations, but the clines are a result of size increases in different portions 289 of the wing on each continent (Gilchrist et al. 2001). Similarly, differences in wing size can 290 be a result of either differences in cell size or in cell number, and contrasting patterns have 291 been found in natural populations (James et al. 1995) and as a result of selection experiments 292 (Partridge et al. 1994). There do not seem to be strong constraints on the evolution of wing

morphology in *Drosophila* (Gidaszewski *et al.* 2009; Mezey & Houle 2005), so these
examples of functionally similar trait values achieved in different ways (both from previous
research and from our own results) are probably the result of differences in time scale.
Divergence on short time scales (i.e. in the laboratory or in new environments) should
proceed in the direction of the most readily available genetic variation (that is, along
evolutionary lines of least resistance, Schluter 1996) while divergence on longer
(evolutionary) time scales should result in optimization of trait values.

300

301 Our results also raise several important questions about the genetic basis of developmental 302 stability, as well as potential causal relationships between FA and fitness. Stressful conditions 303 can increase fluctuating asymmetry (Parsons 1992; Santos et al. 2006; Soto et al. 2008), so 304 the increase in wing size FA in ML females is consistent with the idea that phenotypic 305 masculinization is stressful for females. An alternative explanation for increased FA in 306 females would be that the ML treatment alters the mutation-selection balance in populations, 307 so that females are free to accumulate mutations at female sex-limited loci. This would make 308 reduced fitness and increased FA a by-product of mutation accumulation at female-specific 309 loci. While we cannot discount this hypothesis outright, only a small proportion of loci are 310 expected to be female limited (Parisi et al. 2003), and a previous analysis of the effects of 311 sex-specific selection indicated that most of the decline in the unselected sex could be 312 attributed to a combination of sexually antagonistic loci and mutations that were deleterious 313 in both sexes (Morrow et al. 2008). The consistency of results across independent replicate 314 populations also argues against mutation accumulation at female-limited and female-biased 315 loci as the sole explanation for a reduction in female fitness under ML, although it certainly 316 may have played a role. Similarly, although the ML-evolution laboratory protocol does not 317 preclude adaptation to the Y-chromosome and the translocated chromosomes 2 and 3 found in

318 the clone generator females (see Supplementary Information for more details), such 319 adaptation would not explain the sex-specific nature of the fitness and FA results. The 320 selection for perfection model suggests that males should be selected for increased 321 developmental stability relative to females, but other studies have found higher FA in males 322 in a number of different taxa (Bonduriansky 2009; Breuker et al. 2007; Davis & Grosse 2008; 323 Söderman et al. 2006; Vishalakshi & Singh 2006), and mean male wing size FA was indeed 324 slightly higher than mean female wing size FA in our Control populations. This makes the 325 increase in developmental stability we observed in ML males particularly striking, since it 326 suggests that intralocus sexual conflict is an important factor in determining levels of 327 developmental stability between the sexes.

328

329 The role of FA in mate choice has been widely discussed, and, in particular, the application of 330 this population parameter to the study of individual variation has been called into question 331 (e.g. Houle 1998, but see also Hansen et al. 2006). We unfortunately cannot deduce from the 332 data at hand whether wing size FA contributed directly to increases in ML male fitness via 333 female choice of more symmetrical males, or increased success in intrasexual competition 334 (Møller & Thornhill 1998). Alternatively, FA may simply serve as an indicator trait of high 335 genetic quality/attractiveness, for example if FA is not under direct selection but is negatively 336 correlated with other sexually selected traits (Bonduriansky 2009; Markow & Ricker 1992). 337 ML males evolved increased fitness through higher mating frequency, and behavioural 338 observations have shown that they obtain matings with females with lower courtship effort 339 per copulation (Bedhomme et al. 2008). This does not appear to be related to differences 340 between ML and C populations in CHCs (cuticular hydrocarbons; S. Bedhomme, A.K. 341 Chippindale, N.G. Prasad, M. Delcourt, J.K. Abbott, M.A. Mallet and H.D. Rundle, 342 unpublished data), so we can conclude that some other aspect of attractiveness or general

vigour related to precopulatory sexual selection has improved. Interestingly, recent research
has shown that in mice, loci coding for environmental robustness (insensitivity of the trait to
environmental variation) are almost universally sex-specific (Fraser & Schadt 2010).
Whether this is also true in *Drosophila* is currently unknown, but sex-specificity of
environmental robustness loci is certainly consistent with our results.
Intralocus sexual conflict will manifest itself when positive intersexual genetic correlations

350 prohibit a response to disruptive selection on the sexes for different phenotypic optima. 351 Consistent with this, ML selection not only led to smaller males, but to increased 352 development time, reflecting a decrease in growth rate through both of its components. At the 353 same time, the wing generally evolved increased phenotypic masculinization (both in terms of 354 size and shape), and the developmental stability of ML males increased. Both of these general 355 results were consistent with our expectations from the selection for perfection model 356 discussed above. Because we saw coordinated changes in female morphology when 357 expressing ML chromosomes, but reduced fitness and lower levels of developmental stability, 358 this provides experimental evidence of strong intersexual genetic correlations for the 359 characters themselves but to differing mechanisms of homeostasis in growth and ontogeny 360 within the two sexes.

361

362 ACKNOWLEDGEMENTS

363

364 Financial support was provided by the Swedish Research Council (to JKA), NSERC (to

365 AKC), a Lavoisier Award from the French government (to SB), and by Queen's University

366 ARC Awards (to JKA and SB). Thanks to three anonymous reviewers and Nelly

367 Gidaszewski for helpful comments, to Göran Arnqvist for useful suggestions regarding the

Reference List

analysis of wing shape, and Lea Bond for the use of the microbalance.

369

- 371 Bedhomme, S., N. G. Prasad, P.-P. Jiang and A. K. Chippindale. 2008. Reproductive behavior 372 evolves rapidly when intralocus sexual conflict is removed. PLoS One, 3: e2187. 373 Blanckenhorn, W. U., A. F. G. Dixon, D. J. Fairbairn, M. W. Foellmer, P. Gibert, K. van der 374 Linde, R. Meier, S. Nylin, S. Pitnick, C. Schoff, M. Signorelli, T. Teder and C. Wiklund. 375 2007. Proximate causes of Rensch's rule: does sexual size dimorphism in arthropods result 376 from sex differences in development time? Am. Nat., 169: 245-257. 377 Bonduriansky, R. 2009. Condition dependence of developmental stability in the sexually 378 dimorphic fly Telostylinus angusticollis (Diptera: Neriidae). J. Evol. Biol., 22: 861-872. 379 Bonduriansky, R. and S. F. Chenoweth. 2009. Intralocus sexual conflict. Trends Ecol. Evol., 380 24: 280-288. 381 Brandt, Y. and M. C. B. Andrade. 2007. What is the matter with the gravity hypothesis? 382 Funct. Ecol., 21: 1182-1183. 383 Breuker, C. J., P. M. Brakefield and M. Gibbs. 2007. The association between wing 384 morphology and dispersal is sex-specific in the glanville fritillary butterfly Melitaea cinxia 385 (Lepidoptera: Nymphalidae). European Journal of Entomology, 104: 445-452. 386 Breuker, C. J., J. S. Patterson and C. P. Klingenberg. 2006. A single basis for developmental 387 buffering of Drosophila wing shape. PLoS One, 1:7. 388 Chippindale, A. K., A. L. Ngo and M. R. Rose. 2003. The devil in the details of life-history 389 evolution: instability and reversal of genetic correlations during selection on Drosophila 390 development. J. Genetics, 82: 133-145. 391 Clarke, G. M. 1998. The genetic basis of developmental stability. IV. Individual and 392 population asymmetry parameters. *Heredity*, 80: 553-561.
 - Cowley, D. E. and W. R. Atchley. 1988. Quantitative genetics of *Drosophila melanogaster*.
 II. Heritabilities and genetic correlations between sexes for head and thorax traits. *Genetics*, 119: 421-433.
 - Cowley, D. E., W. R. Atchley and J. J. Rutledge. 1986. Quantitative genetics of *Drosophila melanogaster*. I. Sexual dimorphism in genetic parameters for wing traits. *Genetics*, 114: 549 566.
 - Cox, R. M. and R. Calsbeek. 2009. Sexually antagonistic selection, sexual dimorphism, and
 the resolution of intralocus sexual conflict. *Am. Nat.*, 173: 176-187.

- 401 Davis, A. K. and A. M. Grosse. 2008. Measuring fluctuating asymmetry in plastron scutes of
- 402 yellow-bellied sliders: the importance of gender, size and body location. Am. Midl. Nat., 159:
- 403 340-348.
- 404 Fraser, H. B. and E. E. Schadt. 2010. The quantitative genetics of phenotypic robustness.
 405 *PLoS One*, 5: e8635.
- 406 Frazier, M. R., J. F. Harrison, S. D. Kirkton and S. P. Roberts. 2008. Cold-rearing improves
- 407 cold-flight performance in *Drosophila via* changes in wing morphology. J. Exp. Biol., 211:
- 408 2116-2122.
- 409 Gidaszewski, N. A., M. Baylac and C. P. Klingenberg. 2009. Evolution of sexual
- diimorphism of wing shape in the *Drosophila melanogaster* subgroup. *BMC Evolutionary Biology*, 9: 110.
- 412 Gilchrist, G. W. and R. B. Huey. 2004. Plastic and genetic variation in wing loading as a
- 413 function of temperature within and among parallel clines in *Drosophila subobscura*.
- 414 Integrative and Comparative Biology, 44: 461-470.
- Gilchrist, G. W., R. B. Huey and L. Serra. 2001. Rapid evolution of wing size clines in
 Drosophila subobscura. *Genetica*, 112-113: 273-286.
- Hansen, T. F., A. J. R. Carter and C. Pélabon. 2006. On adaptive accuracy and precision in
 natural populations. *Am. Nat.*, 168: 168-181.
- 419 Houle, D. 1998. High enthusiasm and low *r*-squared. *Evolution*, 52: 1872-1876.
- James, A. C., R. B. R. Azevedo and L. Partridge. 1995. Cellular basis and developmental
 timing in a size cline of *Drosophila melanogaster*. *Genetics*, 140: 659-666.
- 422 Karan, D., J.-P. Morin, P. Gibert, B. Moreteau, S. M. Scheiner and J. R. David. 2000. The
- genetics of phenotypic plasticity. IX. Genetic architecture, temperature, and sex differences in
 Drosophila melanogaster. Evolution, 54: 1035-1040.
- 425 Karan, D., J.-P. Morin, E. Gravot, B. Moreteau and J. R. David. 1999. Body size reaction
- 426 norms in *Drosophila melanogaster*: temporal stability and genetic architecture in a natural
 427 population. *Genetics, Selection, Evolution*, 31: 491-508.
- Klingenberg, C. P. and G. S. McIntyre. 1998. Geometric morphometrics of developmental
 instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. *Evolution*,
 52: 1363-1375.
- Long, T. A. F. and W. R. Rice. 2007. Adult locomotory activity mediates intralocus sexual
 conflict in a laboratory-adapted population of *Drosophila melanogaster*. *Proc. R. Soc. Lond.*
- 433 *B Biol. Sci.*, 274: 3105-3112.
- Maklakov, A. A., T. Bilde and Y. Lubin. 2004. Sexual selection for increased male body size
 and protandry in a spider. *Anim. Behav.*, 68: 1041-1048.
- Markow, T. A. and J. P. Ricker. 1992. Male size, developmental stability, and mating success
 in natural populations of three *Drosophila* species. *Heredity*, 69: 122-127.

- Mezey, J. G. and D. Houle. 2005. The dimensionality of genetic variation for wing shape in *Drosophila melanogaster. Evolution*, 59: 1027-1038.
- 440 Miller, G. T. and S. Pitnick. 2003. Sperm-female coevolution in *Drosophila*. *Science*, 298:
 441 1230-1233.
- 442 Møller, A. P. and R. Thornhill. 1998. Bilateral symmetry and sexual selection: a meta-443 analysis. *Am. Nat.*, 151: 174-192.
- 444 Morrow, E. H., A. D. Stewart and W. R. Rice. 2008. Assessing the extent of genome-wide
- 445 intralocus sexual conflict via experimentally enforced gender-limited selection. J. Evol. Biol.,
- 446 21: 1046-1054.
- 447 Palmer, A. R. 1994. Fluctuating asymmetry analyses: a primer in Markow, T. A. (ed)
- 448 Developmental instability: its origins and evolutionary implications. Kluwer, Dordrecht,
 449 Netherlands.
- 450 Palmer, A. R. and C. Strobeck. 2002. Fluctuating asymmetry analyses revisited in Polak, M.
- 451 (ed) Developmental instability: causes and consequences. Oxford University Press, Oxford,
- 452 UK.
- 453 Parisi, M., R. Nuttall, D. Naiman, G. Bouffard, J. Malley, J. Andrews, S. Eastman and B.
- 454 Oliver. 2003. Paucity of genes on the *Drosophila* X chromosome showing male-biased
 455 expression. *Science*, 299: 697-700.
- 456 Parsons, P. A. 1992. Fluctuating asymmetry: a biological monitor of environmental and457 genomic stress. *Heredity*, 68: 361-368.
- Partridge, L., B. Barrie, K. Fowler and V. French. 1994. Evolution and development of body
 size and cell size in *Drosophila melanogaster* in response to temperature. *Evolution*, 48:
 1269-1276.
- Poissant, J., A. J. Wilson and D. W. Coltman. 2009. Sex-specific genetic variance and the
 evolution of sexual dimorphism: a systematic review of cross-sex genetic correlations.
- 463 *Evolution*, 64: 97-107.
- 464 Powell, A. M., M. Davis and J. R. Powell. 2010. Phenotypic plasticity across 50 MY of
 465 evolution: Drosophila wing size and temperature. *Journal of Insect Physiology*, 56: 380-382.
- 466 Prasad, N. G., S. Bedhomme, T. Day and A. K. Chippindale. 2007. An evolutionary cost of
 467 separate genders revealed by male-limited expression. *Am. Nat.*, 169: 29-37.
- Reeve, H. K. and D. J. Fairbairn. 1996. Sexual size dimorphism as a correlated response to
 selection on body size: an empirical test of the quantitative genetic model. *Evolution*, 50:
 1927-1938.
- 471 Rice, W. R. 1984. Sex chromosomes and the evolution of sexual dimorphism. *Evolution*, 38:
 472 735-742.
- 473 Rice, W. R. 1996. Sexually antagonistic male adaptation triggered by experimental arrest of
 474 female evolution. *Nature*, 381: 232-234.

- 475 Santos, M., D. Brites and H. Laayouni. 2006. Thermal evolution of pre-adult life history
- traits, geometic size and shape, and developmental stability in *Drosophila subobscura*. J. *Evol. Biol.*, 19: 2006-2021.
- 478 Schluter, D. 1996. Adaptive radiation along genetic lines of least resistance. *Evolution*, 50:
 479 1766-1774.
- 480 Söderman, F., S. van Dongen, S. Pakkasmaa and J. Merilä. 2006. Environmental stress
- increases skeletal fluctuating asymmetry in the moor frog *Rana arvalis*. *Oecologia*, 151: 593-604.
- 483 Soto, I. M., V. P. Carreira, E. M. Soto and E. Hasson. 2008. Wing morphology and
- fluctuating asymmetry depend on the host plant in cactophilic *Drosophila*. J. Evol. Biol., 21:
 298-609.
- Taylor, C. E. and V. Kekic. 1988. Sexual Selection in a Natural Population of *Drosophila melanogaster. Evolution*, 42: 197-199.
- 488 Vishalakshi, C. and B. N. Singh. 2006. Fluctuating asymmetry in certain morphological traits
- 489 in laboratory populations of *Drosophila ananassae*. Genome, 49: 777-785.
- 490

Table 1: Statistical significance of analysis of A. Wing size, B. The slope of the allometric relationship between body mass and wing size, C. Relative fitness, and D. Wing size asymmetry. All measures were analysed using factorial ANOVAs on population mean values in JMP, with sex (M or F), selection regime (C or ML), and their interaction (sex*sel) as fixed factors. Degrees of freedom, sums of squares, F-ratios and *P*-values are reported for all effects.

	Effect	DF	SS	F-ratio	<i>P</i> -value
A. Wing si	ize				
	Sex	1	0.3127	528.1	< 0.0001
	Selection	1	0.0029	4.818	0.0486
	Sex*sel	1	3.36*10 ⁻⁶	0.0057	0.9412
	Error	12	0.0071		
B. Allome	try				
	Sex	1	0.1444	1.844	0.1995
	Selection	1	0.3833	4.894	0.0471
	Sex*sel	1	0.0923	1.178	0.2990
	Error	12	0.9399		
C. Relative	fitness				
	Sex	1	0.0010	0.3540	0.5629
	Selection	1	1.98*10 ⁻⁵	0.0068	0.9358
	Sex*sel	1	0.0284	9.691	0.0090
	Error	12	0.0352		
D. Wing siz	ze asymmetry				
	Sex	1	2.53*10 ⁻⁷	1.564	0.2350

Selection	1	4.26*10 ⁻⁸	0.2640	0.6167
Sex*sel	1	9.03*10 ⁻⁷	5.594	0.0357
Error	12	1.94*10 ⁻⁶		

Table 2: Results of MANCOVA analysis of wing shape. Wing shape was analysed using the first 11 relative warps (i.e. principal components of shape) as the dependent variables, with sex (M or F), selection regime (C or ML), and their interaction (sex*sel) as fixed factors. Wing size (centroid size) was also included as a covariate to control for shape differences due to allometric effects. Numerator and denominator degrees of freedom, test statistics (Wilks' λ or F-ratio), and *P*-values are reported for all effects; Wilks' λ is reported for effects with DF > 1, and F-ratio is reported for effects with DF = 1. There were significant effects of both sex and selection regime on wing shape, as well a significant allometric effect of wing size on wing shape.

Effect	Num DF	Den DF	Wilks' λ	F-ratio	<i>P</i> -value
Whole model	44	5.78	9.04*10 ⁹		0.0012
Intercept	11	1		754.8	0.0284
Sex	11	1		1928	0.0178
Selection	11	1		3157	0.0139
Sex*sel	11	1		29.85	0.1419
Wing size	11	1		760.6	0.0283

Figure 1: Landmark locations (A) and wing shape differences (B-C). A. Locations of the 11 landmarks used in this study. B. Visualization of the difference in wing shape between the sexes. Arrows indicate the direction of change from female configuration to male in Control individuals. For the sake of clarity, the difference in shape between the sexes has been exaggerated by a factor of three. C. Visualization of the change in wing shape as a result of male-limited (ML) evolution (males and females pooled). Arrows indicate the direction of change from Control configuration to ML for both sexes. The difference in shape between ML and C groups has been exaggerated by a factor of 10 for the sake of clarity. The change in shape resulting from ML evolution is qualitatively similar to the extant sexual dimorphism for shape, in that both involve an increase in the size of the distal part of the wing, and a decrease in the size of the proximal part of the wing.

Figure 2: Sex by selection interaction in A. Wing size, B. Allometry, C. Relative fitness, and D. Developmental stability (measured as the inverse of the population mean fluctuating asymmetry of wing size). A. Males have smaller wings than females, and ML individuals have smaller wings than Control individuals. This is consistent with previous results for body size. B. The slope of the regression of wing size on body mass was higher for ML flies than for C flies. This suggests an evolutionary change not only in isolated traits, but in a number of interrelated aspects of the developmental program. C. Male fitness was measured as the proportion of the progeny sired by experimental males when in competition with standard competitor males for the access to females. Female fitness was measured as the total progeny produced after experimental females had been in competition with standard competitor females for access to food resources. To make male and female data comparable, fitness is expressed relative to the mean fitness for each sex within each replicate population. The ML

evolution procedure led to an increase in male fitness and a decrease in female fitness, confirming the presence in the ancestral population of sexually antagonistic variation and a gender load. D. ML males have higher developmental stability than C males, while the pattern is reversed for females (i.e. ML females have higher FA than C females; data shown is standardized for size differences, but the pattern is similar for raw data). This suggests that experimental ML evolution has resulted in an increase in developmental stability in males at the cost of a decrease in developmental stability in females. Error bars denote SEs.

Figure 1A

Figure 1B

Figure 1C

Figure 2A

Sex

Figure 2B

Sex

Figure 2C

Sex

Figure 2D

Sexual conflict in wing size and shape in Drosophila melanogaster:

Supplementary information

By Jessica K. Abbott^{1,2}*, Stéphanie Bedhomme^{1,3}, and Adam K. Chippindale¹

1. Department of Biology Queen's University Kingston, Ont. K7L 3N6 Canada 2. Current address: Department of Animal Ecology Evolutionary Biology Centre (EBC) Uppsala University Norbyvägen 18D SE-752 36 Uppsala, Sweden Email: jessica.abbott@ebc.uu.se Phone: +46 18 471 2938 Fax: +46 18 471 6484 3. Current address: Evolutionary Systems Virology Group Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV) Campus UPV, CPI 8E, lab. 3.0.4 Ingeniero Fausto Elio s/n, 46022 València, Spain *author for correspondence

493 SUPPLEMENTARY METHODS

494

495 Male-limited evolution protocol

496

497 The derivation of the male-limited (ML) lines and their matching controls (C) is described in 498 detail elsewhere (Prasad et al., 2007). Briefly, the ancestral population is the LH_M population, 499 a laboratory-adapted outbred population (Chippindale & Rice, 2001). Four large 500 subpopulations were derived from the ancestral population and maintained in isolation for 10 501 generations. From each of these populations, one pair of selected (ML_{1-4}) and control (C_{1-4}) 502 populations was initiated. Selected and control populations bearing the same numerical 503 subscript were therefore more closely related to one another through their common ancestry 504 and subsequent handling than to other selected or control populations. To initiate an ML 505 population, 1040 haplotypes, consisting of chromosomes I (X), II, and III, but not the tiny 506 chromosome IV (i.e. more than 99% of the genome in total, hereafter referred to as 507 haplotypes) were sampled using "clone generator females" carrying a compound X(C(1)DX, 508 y, f), a Y chromosome from the LH_M base population, and a homozygous-viable translocation 509 of the two major autosomes (T(2:3)rdgc st in ri p^p bw). These chromosomal constructs and 510 the absence of molecular recombination in male *D. melanogaster* mediate the transmission of 511 the haplotypes from father to son. The males carrying a translocation and a wildtype 512 haplotype originally sampled from LH_M were crossed each generation to "clone generator 513 females". In this way, these haplotypes were transmitted from father to son only, the grand-514 maternal haplotypes being discarded every generation. Efforts were made to standardize the 515 effective population size between selected (ML) and control (C) populations by maintaining 516 the same number of haploid genomes in each. Finally, the same maintenance protocol was 517 used for C and ML populations, except that the C populations had normal transmission of

518	genetic material from one generation to the next, via both males and females. This
519	experimental protocol completely prevented recombination in the ML populations, which
520	could slow down their rate of adaptation due to genetic hitchhiking, mutation accumulation,
521	and background selection. To prevent this, in each generation 4% of the genomes were passed
522	through a series of crosses in which the ML haplotypes were expressed in females, allowing
523	them to recombine (Prasad et al., 2007). Because this 'recombination loop' constantly
524	received new ML-selected chromosomes, females in it were carrying ML chromosomes from
525	the previous generations of selection. These recombined ML haplotypes were then
526	reintroduced into the general ML population.
527	
528	All flies were reared at 25°C in 50% relative humidity in a 12:12h light/dark cycle under
529	moderate densities of approximately 150 larvae per vial.
530	
531	Generation of males and females expressing ML and C genotypes.
532	
533	At generation 82 of experimental evolution, flies were collected to start a series of three
534	crosses necessary to generate the individuals for fitness measurements and wing morphology
535	analysis. Males from the ML selection treatment were first crossed to the clone generator
536	females described in the main text. The F1 males produced from this cross were then mated
537	to females that were homozygous for a balancer X chromosome (FM7) and translocation (T
538	(2:3) <i>rdgc st in ri pp bw</i>). F2 females that were heterozygous for the balancer X but
539	homozygous for the translocation were then back-crossed to the F1 males. The offspring of
540	this third cross were therefore males and females carrying one ML or C haplotype and the
541	translocation of chromosomes 2 and 3 used to evolve the ML populations.

543 SUPPLEMENTARY RESULTS

545	Both the sexes and the experimental groups differed in dry body mass (Table S1A). Males
546	were significantly smaller than females, and ML individuals were smaller than C individuals
547	(Figure S2A). This is similar to previous results for dry body mass (Prasad et al., 2007). The
548	pattern was the same for wing loading. Females had higher wing loading than males and C
549	had higher wing loading than ML (Table S2B, Figure S1B).
550	
551 552	REFERENCES
553	Chippindale, A. K. and Rice, W. R. 2001. Y chromosome polymorphism is a strong
554	determinant of male fitness in Drosophila melanogaster. Proc. Nat. Acad. Sci. USA 98: 5677-
555	5682.
556	
557	Prasad, N. G., Bedhomme, S., Day, T., and Chippindale, A. K. 2007. An evolutionary cost of
558	separate genders revealed by male-limited expression. Am. Nat. 169: 29-37.
559	
560	
561	

Table S1: Means for each combination of population, sex, and selection regime for all univariate traits. Loading is short for wing loading.

Population	Sex	Selection	Body mass	Wing size	Loading	Allometry	Fitness	FA
1	Female	Control	0.3864	2.280	0.1694	0.3937	1.061	0.0042
1	Male	Control	0.2480	2.031	0.1221	1.256	0.9461	0.0050
2	Female	Control	0.4388	2.317	0.1892	0.4202	1.103	0.0038
2	Male	Control	0.2453	2.039	0.1203	0.3993	0.8998	0.0042
3	Female	Control	0.4261	2.347	0.1816	0.3331	1.040	0.0044
3	Male	Control	0.2469	2.061	0.1198	1.007	1.042	0.0047
4	Female	Control	0.4103	2.316	0.1770	0.5837	1.024	0.0042
4	Male	Control	0.2358	2.014	0.1172	0.4355	0.9386	0.0037
1	Female	ML	0.3930	2.289	0.1715	0.7412	1.038	0.0046
1	Male	ML	0.2312	1.996	0.1158	1.323	1.036	0.0039
2	Female	ML	0.3629	2.319	0.1564	1.133	0.8989	0.0046
2	Male	ML	0.2304	2.048	0.1124	0.8471	1.100	0.0036
3	Female	ML	0.3813	2.263	0.1686	0.9944	0.9679	0.0039

3	Male	ML	0.2265	1.991	0.1138	0.9049	0.9575	0.0034
4	Female	ML	0.3675	2.287	0.1606	0.7077	0.9776	0.0049
4	Male	ML	0.2266	1.999	0.1131	0.6538	1.061	0.0041

Table S2: Statistical significance of analysis of A. Body mass, and B. Wing loading. Mean values for each combination of sex, replicate population, and selection regime were first calculated and then were analyzed using a factorial ANOVA in JMP, with sex (M or F), selection regime (C or ML), and their interaction (sex*sel) as fixed factors. Degrees of freedom, SS, F-ratios and *P*-values are reported for all effects.

	Effect	DF	SS	F-ratio	<i>P</i> -value
A. Body m	ass				
	Sex	1	0.1017	555.5	< 0.0001
	Selection	1	0.0030	16.27	0.0017
	Sex*sel	1	0.0006	3.119	0.1028
	Error	12	0.0022		
B. Wing lo	bading				
	Sex	1	0.0121	390.3	< 0.0001
	Selection	1	0.0004	14.46	0.0025
	Sex*sel	1	8.1*10 ⁻⁵	2.617	0.1317
	Error	12	0.0004		

Figure S1: Differences between the sexes and experimental groups in A. Dry body mass, and B. Wing loading. Males were smaller than females, and ML individuals were smaller than C individuals. Similarly, females had higher wing loading than males and C had higher wing loading than ML. Error bars denote SEs.

Sex

Figure S1A

Sex

Figure S1B