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Abstract 1 

1. Self-medication is ability to consume or otherwise contact biologically active organic compounds 2 

specifically for the purpose of helping to clear a (parasitic) infection or reduce its symptoms.  3 

Consumption of these compounds make either take place before the infection is contracted 4 

(prophylactic consumption) or after the infection is contracted (therapeutic consumption). 5 

2. An important insight is that self-medication is a form of adaptive plasticity, and as such, 6 

consumption of the medicinal substance when uninfected must impose a fitness cost (otherwise the 7 

substance would be universally consumed).  This distinguishes self-medication from several closely 8 

related phenomena such as microbiome effects or compensatory diet choice. 9 

3. A number of recent studies have convincingly demonstrated self-medication within several 10 

different, distantly-related, insect taxa.  Here I review evidence of self-medication in the wooly bear 11 

caterpillar Grammia incorrupta, the armyworm Spodoptera, the fruit fly Drosophila melanogaster, 12 

the monarch butterfly Danaus plexippus, and the honey bee Apis mellifera. 13 

4. These studies show not only that self-medication is possible, but that the target of the medication 14 

behavior may in some cases be kin rather than self.  They also reveal very few general patterns.  I 15 

therefore end by discussing future prospects within the field of insect self-medication. 16 

  17 
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Introduction 18 

Plant-derived organic compounds used in traditional human medicine and in animal self-medication 19 

have been touted as a source of information for the discovery of new drugs (Huffman 2003).  20 

Although evidence for self-medication in nonhuman animals was initially mostly anecdotal, increased 21 

research in this area over the past two decades has resulted in convincing evidence of self-22 

medication in a number of species, such as chimpanzees and sheep (Hutchings et al. 2003).   It has 23 

been known for a long time that some types of insect utilize ingested plant compounds for defense 24 

(Ode 2006), but despite this, most researchers writing about animal self-medication previously 25 

assumed that this behavior would require learning, and therefore only be present in higher 26 

vertebrates (Clayton and Wolfe 1993; e.g. Lozano 1998).  Yet in the past five years, several papers 27 

have been published demonstrating that self-medication is not only possible in insects, but 28 

taxonomically widespread.  Some of these studies have been highlighted in a recent short 29 

perspectives paper in Science (de Roode et al. 2013b), but I would argue that the time is also ripe for 30 

a more comprehensive summary of the field.  Here I will therefore review the current literature on 31 

self-medication and discuss possibilities for future research in this area. 32 

 33 

An insect’s first lines of defense against infection are structural (e.g. cuticle and peritrophic matrix, 34 

midgut cell sloughing) and behavioural (e.g. avoidance) (Lundgren and Jurat-Fuentes 2012). Once the 35 

cuticle has been breached then the innate immune system, which includes melanization, 36 

encapsulation, and the production of antimicrobial peptides (Merkling and van Rij 2012; Smilanich et 37 

al. 2009b), comes into play.  However if none of these defenses are effective, then self-medication 38 

may be an alternative.  True self-medication has a rather strict definition (Singer et al. 2009), and the 39 

criteria for demonstrating it have been refined over time.  An early paper by Boppré (1984) defined 40 

pharmacophagy as the search for and uptake of secondary plant substances, for a purpose other 41 

than primary metabolism.  This definition obviously applies to self-medication behavior, but may also 42 
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include other unrelated phenomena, such as the use of plant compounds as olfactory signals 43 

(“perfumes”) to attract mates (Boppré 1984; Wee et al. 2007).  Self-medication is therefore usually 44 

defined as the use of organic compounds specifically for the purpose of helping to clear a (parasitic) 45 

infection or reduce its symptoms (Lozano 1998).  These organic compounds need not necessarily be 46 

plant-derived; many sources are possible including fungi, other animals, microbes, etc. The purpose 47 

of self-medication may vary in terms of tolerance and resistance.  Resistance is an individual’s ability 48 

to limit parasite burden (either by lowering infection risk and/or infection load), while tolerance is an 49 

individual’s ability to limit the damage caused at a given infection load (Råberg et al. 2007).  Most of 50 

the research to date on self-medication in insects has investigated effects on resistance (discussed in 51 

more detail below), but there is at least one example of increased tolerance (Karban and English-52 

Loeb 1997).  It is worth noting that medicinal compounds need not necessarily be ingested; 53 

absorption, topical application, and proximity are other viable methods of self-medication (Boppré 54 

1984; Clayton and Wolfe 1993), although here I will talk about consumption or ingestion for the sake 55 

of simplicity.  A classic list of three criteria that must be met to establish self-medication comes from 56 

Clayton and Wolfe (1993):  57 

1. The substance in question must be deliberately contacted. 58 

2. The substance must be detrimental to one or more parasites. 59 

3. The detrimental effect on parasites must lead to increased host fitness. 60 

 61 

The second and third criteria are rather self-evident; a substance that does not reduce parasite 62 

fitness and increase host fitness can hardly be considered medicinal.  However the first criterion is 63 

rather important in that it separates behavior for self-treatment from other phenomena such as the 64 

role of enemy-free space in determining niche breadth and tritrophic interactions (reviewed in Ode 65 

2006).  The problem with these criteria is that they do not include any information about the effect 66 



5 
 

of the medicinal substance on the infected individual.  A substance that is universally beneficial 67 

should be consumed whenever encountered, and it is questionable whether it is possible in this case 68 

to make any distinction between self-medication and diet choice.  Because of this, Singer et al. (2009) 69 

further developed the concept of self-medication within the framework of adaptive plasticity.  70 

Adaptive plasticity is the ability of an individual to change the expression of a trait in a predictable 71 

way relative to an environmental factor, and is expected when there is a trade-off between 72 

alternative phenotypes (Pigliucci 2005; Sinervo and Svensson 1998).  Singer et al. (2009) therefore 73 

argued that the existence of a trade-off is essential for establishing self-medication, and added a 74 

fourth criterion to those suggested by Clayton and Wolfe (1993): 75 

4. The substance must have a detrimental effect on the host in the absence of parasites.   76 

 77 

The insight that self-medication is a form of adaptive plasticity is an important one, in that it suggests 78 

that self-medication (both in insects and in other groups) is likely to be more common than 79 

previously thought.  Studies of vertebrates have usually identified potentially medicinal compounds 80 

by investigating items that are not a part of the normal diet (Clayton and Wolfe 1993; Huffman 2003; 81 

Lozano 1998).  However a plastic self-medication response could just as easily be a quantitative one 82 

rather than a qualitative one, for example by increasing the consumption of specific substances that 83 

do make up part of the normal diet (Singer et al. 2009).  Because insects consume a wide range of 84 

biologically active organic substances (Ode 2006), there is in fact likely to be a rather large potential 85 

for self-medication in insects. 86 

 87 
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Self-medication as distinct from other phenomena 88 

By using the four criteria listed above, we can distinguish true self-medication behavior from other 89 

related phenomena such as prophylactic consumption or compensatory diet choice.  Self-medication 90 

requires the consumption of foreign compounds, so recent examples where insects use 91 

autonomously produced antimicrobial compounds for food hygiene (Herzner et al. 2013) or kin 92 

grooming (Tragust et al. 2013), although interesting, do not fall under the definition of self-93 

medication.  The most important factor in separating self-medication from other behaviors is 94 

whether the substance in question is toxic or otherwise detrimental to the consumer, in accordance 95 

with criterion 4 above.  Here it is important to highlight the importance of dose-dependence. Many 96 

compounds that are innocuous or even beneficial at low doses can become toxic or otherwise 97 

harmful at high doses. Determining toxicity or other costs of consumption over a range of doses can 98 

also be challenging in practice. We can therefore refine criterion 4 to state that the substance must 99 

be detrimental to uninfected individuals when ingested at the level ingested by infected individuals. A 100 

further useful distinction is whether the substance is consumed before or after infection.  Although 101 

not explicitly included in the criteria listed above, substances that are ingested to prevent infection 102 

(prophylaxis) may differ from those that are used to treat an existing infection (therapeutic 103 

medication).  Using these two factors, we can set up a matrix of four related categories, all of which 104 

may influence resistance or tolerance to parasites, but only two of which can be considered self 105 

medication (summarized in Figure 1): 106 

 107 

1. Non-toxic substances that are consumed prophylactically   108 

This is a very broad category in that it could potentially include almost any food source that increases 109 

overall condition or immune function (Behmer 2009).  One recent paper demonstrated for example 110 

that alkaloids in nectar can reduce pathogen loads in bumblebees (Bombus impatiens Cresson 111 

(Hymenoptera: Apidae)), with no apparent ill effect on the bees themselves (Manson et al. 2010).  112 
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However if we restrict the category to non-nutrient compounds, then one interesting instance of this 113 

phenomenon could be microbiome effects.  Bumblebees (Bombus terrestris Linnaeus (Hymenoptera: 114 

Apidae)) that were experimentally exposed to the trypanosomal parasite Crithidia bombi 115 

(Kinetoplastida: Trypanosomatidae) developed much lower infection loads if they had previously 116 

been fed a solution containing feces from their nestmates (Koch and Schmid-Hempel 2011), in 117 

comparison to control individuals (fed only sugar water) and those that were experimentally 118 

inoculated with Gammaprotea bacteria (a dominant component of the bee gut flora, and presumably 119 

commensal).  Although the exact mechanism limiting C. bombi growth in the feces-fed bees is 120 

unknown, the intestinal flora of the feces-fed bees was similar to that found in lab colonies and in the 121 

field, in contrast to the bees in the other treatments (Koch and Schmid-Hempel 2011).  This suggests 122 

that gut microbiota play a role in health, and that inoculation with the appropriate flora can reduce 123 

the severity of parasitic infections.  Similarly, Wolbachia (Rickettsiales: Rickettsiaceae) has been 124 

found to induce viral resistance in Drosophila Fallén (Diptera: Drosophilidae) and Aedes Meigen 125 

(Diptera: Culicidae) (reviewed in Merkling and van Rij 2012). Wolbachia is normally transmitted 126 

vertically and this precludes selective acquisition, but some instances of horizontal transmission of 127 

are known (Schuler et al. 2013; Werren 1997), and these examples at least demonstrate that it is 128 

possible for infection with one type of microbe to provide a protective effect against another. 129 

Although interesting, one caveat with these examples is that it is unknown whether insects 130 

deliberately contact the nectar alkaloids or microbiome elements in question (criterion 1). 131 

 132 

2. Non-toxic substances that are consumed therapeutically 133 

When specific substances are consumed as a response to infection, but no cost of consumption is 134 

evident, this is an example of compensatory diet choice.  For example, infected individuals of the 135 

beetle Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae) increased protein consumption 136 

relative to uninfected individuals, allowing them to offset costs of infection. However elevated 137 
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protein intake did not appear to reduce fitness in uninfected individuals (Ponton et al. 2011). 138 

Consumption of different yeast species also affects encapsulation ability of larval Drosophila 139 

melanogaster Meigen (Diptera: Drosophilidae) infected by the parasitoid wasp Asobara tabida Nees 140 

(Hymenoptera: Braconidae), but had no effect on survival until eclosion (Anagnostou et al. 2010). 141 

Another possible example of therapeutic consumption comes from Karban and English-Loeb (1997).  142 

They found evidence that consumption of poison hemlock (Conium maculatum Linnaeus (Apiales: 143 

Apiaceae)) increased survival rates of the caterpillar Platypreia virginalis Boiduval (Lepidoptera: 144 

Erebidae) when parasitized by the tachinid parasitoid Thelaira Americana Brooks (Diptera: 145 

Tachinidae).  However it is unclear whether this is really an example of therapeutic consumption, or 146 

of host manipulation by the parasitoid (Singer et al. 2009), since both host and parasitoid benefited 147 

from increased consumption of poison hemlock; the caterpillar in terms of survival, and the 148 

parasitoid in terms of eclosion weight (Karban and English-Loeb 1997). In general, compensatory diet 149 

choice might usefully be considered a fallback description for any behaviour that meets the first 3 150 

criteria for self-medication, but where the presence of costs (criterion 4) has not yet been 151 

established. 152 

 153 

3. Prophylactic self-medication   154 

Prophylactic self-medication differs from flexible diet choice for optimal nutrient intake in that the 155 

substances consumed must impose a fitness cost (Singer et al. 2009).  A complication is that 156 

demonstrating such a fitness cost might not always be straightforward,   as the toxicity of a 157 

substance may vary not only with dose but also according to the nutritional status of an individual.  158 

Tannic acid is normally harmful when consumed, but locusts provided with an optimal ratio of 159 

protein to carbohydrate did not experience any deleterious effects of consuming tannic acid 160 

(reviewed in Behmer 2009).  In addition, insects may consume non-nutritive secondary plant 161 

metabolites not to prevent infection, but because the food source in question most closely matches 162 
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their nutrient intake target (Behmer 2009).  Both of these factors could make it difficult to 163 

definitively establish that prophylactic self-medication is occurring.  One can also wonder how 164 

frequent prophylactic self-medication is likely to be, given that an uninfected individual which 165 

consumes the active substance will always pay the associated fitness cost, yet the risk of infection 166 

will probably rarely be 100%.  A priori we might then expect that prophylactic self-medication will be 167 

most likely to occur when the risk of infection is high and the associated cost of consumption is 168 

relatively low. 169 

 170 

4. Therapeutic self-medication  171 

Therapeutic self-medication differs from prophylactic self-medication in that consumption occurs 172 

after infection.  As discussed above, this need not necessarily mean that the substance in question is 173 

never consumed by uninfected individuals.  In fact, most of the recent examples of self-medication in 174 

insects (discussed in more detail in the next section) involve increased consumption of substances 175 

that occur as part of the normal diet.  Because of this, demonstrating therapeutic self-medication is 176 

probably simpler in practice than demonstrating prophylactic self-medication.  The inclusion of a 177 

harmful substance in the normal diet could have many causes, as touched on briefly above, but 178 

increased consumption after infection of a substance toxic to both host and parasite is difficult to 179 

explain in terms of anything but self-medication. 180 

 181 

What are the targets of medication behavior? 182 

Within prophylactic and therapeutic medication, an additional useful distinction can be made 183 

between self-medication versus medication of kin (de Roode et al. 2013b).  For example, social 184 

insects are known to engage in a number of behaviors that reduce the risk of infection at the colony 185 

level, a phenomenon known as social immunity (Cremer et al. 2007).  One phenomenon that has 186 
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been suggested to be a form of prophylactic self-medication is collection of resin for incorporation 187 

into the nest in ants (Castella et al. 2008; Chapuisat et al. 2007; Christe et al. 2003) and bees 188 

(Simone-Finstrom and Spivak 2012).  Such behavior is clearly an example of social immunity, but it is 189 

questionable whether it really is a form of (self or kin) medication or not, since the resin did not seem 190 

to have any detrimental effect in uninfected ant colonies (Chapuisat et al. 2007).  If this is generally 191 

the case, then resin collection is rather an example of prophylactic (Castella et al. 2008) or 192 

therapeutic (Simone-Finstrom and Spivak 2012) consumption (i.e. categories 1 and 2 above) and not 193 

self/kin medication per se.  Somewhat surprisingly, the clearest cases for kin medication come from 194 

Drosophila and Danaus (see next section), and not the social insects. 195 

 196 

Recent evidence for self-medication 197 

The most convincing cases of self-medication to date are in wooly bear caterpillars Grammia Rambur 198 

(Lepidoptera: Arctiidae), armyworms Spodoptera Guenée (Lepidoptera: Noctuidae), Drosophila fruit 199 

flies, and monarch butterflies Danaus plexippus Kluk (Lepidoptera: Nymphalidae).  In these species, 200 

all four criteria for demonstrating self-medication have been met.  Some recent publications have 201 

also suggested that self-medication may exist in honey bees Apis mellifera Linnaeus (Hymenoptera: 202 

Apidae), although this is somewhat more ambiguous, since not all four criteria have yet been met.  A 203 

summary of these 5 cases can be found in Table 1. 204 

 205 

It is perhaps unsurprising that self-medication occurs in caterpillars such as Grammia, Spodoptera 206 

and Danaus, given the large literature on the use of toxic host plant secondary metabolites for 207 

defense in many species of moths and butterflies (Hunter 2003; Ode 2006).  At first glance one might 208 

therefore not expect self-medication to occur in Drosophila, since fruit flies are repelled by some 209 

plant toxins (Mitri et al. 2009) and generally feed on non-noxious species (the cactophilic and 210 
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mycophagous Drosophilids being an exception; Fogleman and Danielson 2001; Jaenike 1985).  211 

However because Drosophila live on rotting plant tissue, alcohol is a common component of the 212 

natural diet (Gibson et al. 1981).   213 

 214 

Grammia 215 

Work by Singer and colleagues has revealed evidence for all 4 self-medication criteria above in 216 

Grammia.  Grammia incorrupta Edwards (Lepidoptera: Arctiidae) is a generalist species that feeds on 217 

a wide range of plants producing pyrrolizidine alkaloids (PAs).  PAs are biologically active compounds 218 

that are noxious to non-adapted species (Hartmann 1999).  When infected with parasitoids, either 219 

naturally in or a lab setting, G. incorrupta preference for PAs increases (Singer et al. 2009; Smilanich 220 

et al. 2011), consistent with deliberate contact (criterion 1) for the purpose of therapeutic self-221 

medication.  Increased PA consumption lowers survival of the tachinid parasitoid Exorista mella 222 

Walker (Diptera: Tachinidae) in experimentally infected individuals (Singer et al. 2009), consistent 223 

with detrimental effects on parasites (criterion 2).  Parasitized caterpillars that were given the 224 

opportunity to ingest PAs had higher survival than control caterpillars (Singer et al. 2004; Singer et al. 225 

2009), consistent with increased host fitness (criterion 3).  Finally, increased consumption of PAs has 226 

detrimental effects on growth and survival in unparasitized caterpillars (Singer et al. 2004; Singer et 227 

al. 2009), consistent with a fitness cost of consuming the medicinal substance (criterion 4).  228 

Interestingly, infection intensity and infection stage appear to influence self-medication behavior.  In 229 

the early stages of infection, there was no difference in PA consumption between parasitized and 230 

unparasitized caterpillars (Smilanich et al. 2011).  Similarly, surviving caterpillars infected with only 231 

one parasitoid egg did not increase PA consumption, while those infected with two or three eggs did, 232 

although the difference was not significant in those infected with three eggs (Singer et al. 2009).  233 

These results are consistent with innate immunity as the first line of defense, and that self-234 

medication behavior is activated only when the innate immune response has shown itself insufficient 235 

to clear the infection (Singer et al. 2009).  Additional indirect evidence for the importance of the 236 
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innate immune response comes from the fact that parasitized caterpillars also show increased 237 

consumption of nutritive plants that do not contain PAs (Smilanich et al. 2011), particularly in 238 

surviving individuals infected with only one egg (Singer et al. 2009).  This is consistent with 239 

compensatory diet choice for increased innate immunity, and shows that self-medication and 240 

compensatory diet choice are not mutually incompatible.  Additional research on the related species 241 

Grammia geneura Strecker (Lepidoptera: Arctiidae) and Estigmene acrea Drury (Lepidoptera: 242 

Arctiidae) indicates that the proximate mechanism activating self-medication behavior in this system 243 

is likely to be endoparasite-induced taste alteration, such that PA-containing food sources become 244 

more palatable to infected individuals (Bernays and Singer 2005). 245 

 246 

Spodoptera 247 

More evidence for self-medication in caterpillars comes from research on armyworms (Spodoptera). 248 

Lee et al. (2006) found that resistance to nucleopolyhedrovirus (NPV; Baculoviridae) increased with 249 

increasing food protein content in the caterpillar Spodoptera littoralis Boiduval (Lepidoptera: 250 

Noctuidae), and that infected caterpillars preferred to eat food containing more protein.  In addition, 251 

surviving infected larvae chose higher levels of protein than infected larvae that ended up dying, 252 

indicating that diet choice was not only active but also adaptive.  This demonstrates that insects can 253 

flexibly adjust their diet according to infection status.  Mounting an innate immune response is 254 

presumably costly, so an increased protein intake might offset this cost.  When uninfected 255 

caterpillars consumed levels of protein that maximized performance in infected caterpillars they 256 

exhibited a slight decline in performance, consistent with costs of increased protein consumption 257 

(criterion 4). These results have also been confirmed for S. littoralis infected with Micrococcus luteus 258 

Cohn (formerly lysodeikticus; Micrococcales: Micrococcaceae)(Cotter et al. 2011). In addition, similar 259 

results have been obtained from Spodoptera exempta infected with the bacterium Bacillus subtilis 260 

(Povey et al. 2009), who also found evidence that the cost was due to increased phenoloxidase 261 

activity (an important immune enzyme). A follow-up experiment using S. exempta infected with NPV 262 
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tracked dynamic nutrient intake over time and also found a general pattern of increased protein 263 

intake after infection (Povey et al. in press). Interestingly, this study used full-sib families split 264 

between treatments and could therefore test for genetic variation in self-medication behavior. They 265 

found that the response was very consistent across families, suggesting that there is little variation in 266 

the degree of phenotypic plasticity in self-medication in this species (Povey et al. in press). 267 

 268 

Drosophila 269 

Two recent papers by Kacsoh, Schlenke, and colleagues have also convincingly demonstrated self-270 

medication in Drosophila.  They used food media containing either zero (control) or 6% ethanol, and 271 

found that larvae of Drosophila melanogaster exposed to the parasitoid wasps Leptopilina boulardi 272 

(Hymenoptera: Figitidae) and L. heterotoma Thomson (Hymenoptera: Figitidae) exhibited an active 273 

preference for food containing ethanol (Milan et al. 2012), consistent with criterion 1 (active contact 274 

with the substance).  Wasps were shown to prefer to oviposit in larvae raised on the control (alcohol-275 

free) medium, and wasp larvae showed higher mortality when in hosts from the ethanol-containing 276 

medium (Milan et al. 2012), consistent with criterion 2 (detrimental effect of the substance on the 277 

parasite).  Parasitized flies that were given the opportunity to consume the ethanol-containing 278 

medium had higher survival rates than those on the control medium (Milan et al. 2012), consistent 279 

with criterion 3 (a beneficial effect of the medicinal substance when parasitized).  Finally, 280 

unparasitized fly larvae had higher mortality on the ethanol-containing medium than on the control 281 

medium (Milan et al. 2012), consistent with criterion 4 (a detrimental effect of the medicinal 282 

substance when unparasitized).  It is important to note that the effects of ethanol are dose-283 

dependent; levels below 4% are beneficial in adult D. melanogaster, while levels above 4% are 284 

detrimental (Chawla et al. 1981).  The 6% level used by Milan et al. (2012) is intermediate relative to 285 

natural levels of ethanol, which may range up to 12-15% (Gibson et al. 1981).  Interestingly, ethanol 286 
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was less effective as a medication against L. boulardi (a specialist of D. melanogaster) than against L. 287 

heterotoma (a generalist wasp), consistent with host-parasite coevolution in this system. 288 

 289 

Apart from the therapeutic self-medication discussed above, Drosophila has also been found to 290 

practice prophylactic kin medication.  Female flies that were exposed to L. heterotoma showed a 291 

significant preference to oviposit on alcohol-containing media, while unexposed control females 292 

preferred to oviposit on the alcohol-free control medium (Kacsoh et al. 2013).  Remarkably, the 293 

preference was consistent for at least 4 days after exposure, and only female wasps induced the 294 

preference; when female flies were exposed to male wasps their oviposition preference was 295 

unaffected (Kacsoh et al. 2013).  Consistent with the results in Milan et al. (2012), offspring survival 296 

was higher on alcohol-free medium in the absence of the parasitoid, but higher on alcohol-containing 297 

medium in the presence of the parasitoid (Kacsoh et al. 2013).  Additional experiments using various 298 

mutant strains of flies confirmed that recognition of L. heterotoma was visual rather than olfactory 299 

(Kacsoh et al. 2013).  A number of other parasitoid species that infect fly larvae induced similar 300 

oviposition preferences (Kacsoh et al. 2013).  Admirably, Kacsoh et al. (2013) also included a 301 

phylogenetic perspective, and found evidence not only that multiple species of Drosophila can adjust 302 

oviposition preference according to the risk of parasitization, but also that the strength of the 303 

preference was correlated with ethanol tolerance. 304 

 305 

Danaus 306 

Two complementary studies have found evidence that monarch butterflies (D. plexippus) also engage 307 

in prophylactic kin medication.  Although incapable of curing themselves of infections of the 308 

protozoan parasite Ophryocystis elektroscirrha McLaughlin & Myers (Neogregarinorida: Olindiidae), 309 

females that are themselves infected show a preference for oviposition on more toxic species of 310 
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milkweed Asclepias Linnaeus (Gentianales:  Apocynaceae) (Lefèvre et al. 2012; Lefèvre et al. 2010), 311 

consistent with criterion 1.  More toxic species (i.e. containing higher concentrations of cardenolides) 312 

were also found to be more efficient in inhibiting parasite growth (Lefèvre et al. 2012; Lefèvre et al. 313 

2010), consistent with criterion 2.  Infected individuals raised on a more toxic species (A. curassavica) 314 

had longer lifespans and lower parasite loads than those raised on a less toxic species (A. incarnata) 315 

(Lefèvre et al. 2010), and there was a negative correlation between spore load and lifespan across 5 316 

different milkweed species (Lefèvre et al. 2012), consistent with criterion 3.  Finally, uninfected 317 

individuals had longer lifespans on the less toxic species (Lefèvre et al. 2010), consistent with 318 

criterion 4.  This is an interesting example of prophylactic kin medication, since in this case the risk of 319 

parasitism in offspring is determined using the female’s own internal state, in contrast to in 320 

Drosophila, where visual perception of parasitoids is the cue.  Such a determination is feasible in this 321 

case, because females shed spores of O. elektroscirrha during oviposition but larvae are not capable 322 

of avoiding these spores (Lefèvre et al. 2012).  This means that a female’s own infection status is an 323 

accurate guide to the risk of infection in offspring.  324 

 325 

Apis 326 

Simone-Finstrom and Spivak (2012) recently demonstrated that honey bees (A. mellifera) increase 327 

resin collection after immune challenge with the fungal pathogen Ascosphaera apis Olive & Spiltoir 328 

(Onygenales: Ascosphaeraceae); a therapeutic response which is consistent with criterion 1 above.  329 

This result is of interest because although resin collection has previously been acknowledged as a 330 

form of social immunity (Cremer et al. 2007), it has been found to be prophylactic rather than 331 

therapeutic (Castella et al. 2008).  Resin has been shown to reduce parasite loads in bees (Simone et 332 

al. 2009), consistent with criterion 2.  Although it’s not clear whether this collection results in a direct 333 

survival benefit, bees raised in resin-containing nests invested less in innate immune function, which 334 

is consistent with criterion 3 (Simone et al. 2009).  Thus the only aspect that is missing here is the 335 
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cost of resin collection in uninfected colonies; if such a cost can be demonstrated then this behavior 336 

can definitely be considered an example of self-medication.  Although it’s possible that resin 337 

collection itself could be a cost in that it is energetically demanding, Simone et al. (Simone et al. 338 

2009) argued that because only a small proportion of workers forage for resin, this is unlikely to be a 339 

major cost on the colony level.  Obviously more investigation into possible trade-offs of resin 340 

collection are needed.  341 

 342 

General patterns in self-medication, and future directions 343 

Looking at Table 1, it is in fact difficult to see any general patterns among these examples of self-344 

medication.  The behavior may be employed at either the adult or larval stage, and the substance 345 

may be either prophylactic in nature, therapeutic in nature, or both.  It may be to benefit self, to 346 

benefit kin, or both.  Not all of the medicinal substances are what would traditionally be considered 347 

toxic and they vary considerably in type and origin.  A wide variety of parasite groups invoke the self-348 

medication response.  One of the commonalities is that all examples involve the consumption (or 349 

collection) of compounds that are considered a normal part of the diet (or the immediate 350 

environment, in the case of resin).  This may be a reflection of the evolutionary origins of self-351 

medication behavior in insects.  Although individual learning of medicinal substances might not be 352 

completely out of the question (Moore et al. 2013), it seems more likely that most self-medication 353 

will be quantitative in nature rather than qualitative (de Roode et al. 2013a; Singer et al. 2009). For 354 

example, ingestion of the medicinal substance may have initially had a different function (an example 355 

of adaptive plasticity, rather than plasticity as an adaptation; Gotthard and Nylin 1995), or may be a 356 

result of low receptor specificity resulting in coincidental ingestion (Tallamy et al. 1999). Many insect 357 

species also have large population sizes, short generation times, and naturally encounter or ingest 358 

biologically active substances, all of which should favor the evolution of self-medication.  Because of 359 

this, it seems probable that there are many more instances of self-medication yet to be discovered.   360 
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 361 

But of course many questions remain.  Just how taxonomically widespread is self-medication in 362 

insects?  Are there relatively many independent origins, or only a few?  Is frequent contact with the 363 

medicinal substance really a prerequisite for the evolution of self-medication, or can chance and 364 

individual learning play a role?  Are all types of pathogen amenable to the evolution of self-365 

medication, or only some?  Similarly, are only certain types of substances suitable for use in self-366 

medication?  These questions simply cannot be resolved without more data.  One important future 367 

direction will therefore be to evaluate the potential for self-medication in many more taxa, and 368 

determine if there are any general evolutionary or ecological predictors of the behavior.  Variation in 369 

the level of response is seen both at the species level (Kacsoh et al. 2013) and at the individual level 370 

(e.g. Milan et al. 2012; Singer et al. 2009), begging the question of the heritability of self-medication 371 

traits.  The heritability and genetic basis of self-medication behavior should therefore also be an 372 

important issue to address in future, since to my knowledge only one study to date has attempted to 373 

measure genetic variation in self-medication behavior (Povey et al. in press). 374 

 375 

As results from Grammia show, multiple types of response are likely to be mutually non-exclusive, 376 

and the interaction between different responses (such as innate immunity and self-medication) is 377 

another fruitful avenue of future investigation.  For example, do populations with higher parasite 378 

pressure evolve an increased propensity for self-medication, an increased innate immunity, or both?  379 

A comparative study on caterpillars has already determined that species with the highest innate 380 

immunity have lower rates of parasitism (Smilanich et al. 2009b), and work on social insects suggests 381 

that an effective colony-level immunity results in the reduction of investment in individual immunity 382 

(Cremer et al. 2007; Simone et al. 2009).  Innate immunity and self-medication may therefore trade-383 

off against one another (Smilanich et al. 2009a), but this question will require more in depth 384 

evaluation.    A further question is the proximate mechanism of self-medication.  In most cases the 385 
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mechanism controlling the activation of the self-medication behavior is unknown, although some 386 

sort of feedback between internal health state and taste and/or olfactory perception seems likely 387 

(Behmer 2009), similar to that found in Bernays and Singer (2005).  Although demonstrating a cost of 388 

plasticity per se is often fraught with difficulties (Pigliucci 2005), it is known that increased learning 389 

ability imposes a fitness cost in Drosophila (Mery and Kawecki 2003).  Could the same be true of the 390 

capacity for self-medication, independent of the direct detrimental effects of the medicinal 391 

substance itself? 392 

 393 

In short, the evidence that self-medication can and does occur, at least in some insect species, is 394 

clear.  The data at hand also provide a tantalizing suggestion that self-medication is a widespread and 395 

highly variable phenomenon.  There is much still to be discovered within this fascinating field, and I 396 

am sure that there will be many exciting new developments within the next decade. 397 
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Table 1: Overview of recent studies of self-medication in insects. 573 

Insect Type of 

pathogen 

Substance used Costly to 

consumer? 

Prophylactic or 

therapeutic? 

Life 

stage? 

Kin or 

self? 

References 

Moth (G. incorrupta) Parasitoid 

flies 

Pyrrolizidine 

alkaloids 

Yes Therapeutic Larva Self Singer et al. 2004, Singer et al. 

2009, Smilanich et al. 2011 

Armyworm (S. littoralis 

& S. exempta 

Virus, 

bacteria 

Protein Yes Therapeutic Larva Self Cotter et al. 2011, Lee et al. 2006, 

Povey et al. 2009, Povey et al. in 

press. 

Fruit fly (D. 

melanogaster) 

Parasitoid 

wasps 

Ethanol Yes Both Larva Both Milan et al. 2012, Kacsoh et al. 

2013 

Monarch butterfly (D. 

plexippus) 

Protozoan Cardenolides Yes Prophylactic Larva Kin Lefèvre et al. 2010, Lefèvre et al. 

2012 

Honey bees (A. 

mellifera) 

Fungus Resin ? Both Adult Kin Simone et al. 2009, Simone-

Finstrom & Spivak 2012 
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Figure 1: Self medication as distinct from other phenomena.  Substances consumed may either be 574 

prophylactic or therapeutic in nature, but in order to establish true self-medication, four criteria 575 

must be met:  1. The substance in question must be deliberately contacted.  2. The substance must 576 

be detrimental to one or more parasites.  3. The detrimental effect on parasites must lead to 577 

increased host fitness.  4. The substance must have a detrimental effect on the host in the absence of 578 

parasites.  Assuming that the first three criteria are met, we can develop four categories of related 579 

phenomena depending on whether the active substance is contacted before or after infection, and 580 

whether it imposes a fitness cost on the consumer or not.  Note that although toxicity is highlighted 581 

here, this could equally well apply to other forms of fitness cost, and ingestion is not the only method 582 

of contacting medicinal substances.  Toxicity may also be dose-dependent, which is indicated by the 583 

gradual colour gradient between the toxic and non-toxic categories. See main text for more details. 584 
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